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Abstract. We consider quantized derivation representationsf Hopf algebrasH in some
associative algebrad. The algebra of quantized differential operatotsx, H of bialgebra
representations, which are special representations by derivations, are constructed. For the
quantum enveloping algebrds, (g) of Lie algebras associated with the root systems B,,

C, and D, we define a deformatiom of the exterior algebra of forms, and by applying the
above results it is shown that the quantized adjoint representatiof (@) induces a bialgebra
representation &dof U, (g) in A. The resulting algebra of differential operatats< ;¢ U, (g)

is a deformation of the standard Koszul complex of Lie algebras. It admits an exterior derivative
which is, in particular, &/, (g)-module morphism. Hence cohomology groupdigig) relative

to someU, (g)-module M can be constructed.

1. Introduction

For several kinds of quantum groups bicovariant differential calculi were developed
[CSWW, Jur, Wor]. They provide higher-order differential calciit with an exterior
derivative D so that (', D) is a complex. Especially for the quantum groups of Lie
algebrasg of type A,,, B,, C, and D, the differential calculi, where the algebra generated
by the (left-invariant) vector fields is equivalent to the quantum enveloping aldéli,

are of particular interest [CSWW, Jur]—the compléX", D) can then be considered as

a deformation of the de Rham complex of the corresponding Lie group. The resulting
cohomology groups are in general different from the classical ones [Gri].

In the classical theory besides the de Rham cohomology of Lie groups a cohomology
structure for Lie algebras exists which is initiated by the so-called standard or Koszul
complex of Lie algebras [CE, HS, Jac]. Key ingredients for the explicit construction are
the exterior algebra over the Lie algebra, the adjoint representation of the Lie algebra and
the induced algebra of differential operators [Jac].

The aim of this paper is the construction of a complex over the quantum enveloping
algebraU, (g) for Lie algebrasg of type A,, B,, C, and D, which yields a homological
structure and admits a (dudl, (¢)-modular) cohomology. This complex turns out to be a
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deformation of the classical Koszul complex for Lie algebras. We show that all essential
results of the classical theory can be generalized to the quantum case. Especially the
nilpotent derivative d has analogous properties. Though there are differences between the
classical and the standard complex. Namely the quantum Koszul complex is no more exact
and it seems therefore that no categorial definition is possible for the cohomologig&of

a fact which already appeared in the construction of differential calculi of quantum groups.
Nevertheless, there is some uniqueness for the homology and cohomology structures of
U, (g) since vector fields are used which genertdjgg)—we conjecture the independence

of the cohomologies of the differef, (g)-generating sets of vector fields.

For a better understanding of the paper we presuppose knowledge of Hopf algebras and
guantum groups [Abe, Dri, FRT]. Section 2 begins with an introduction to basic concepts
needed in the course of our work like, for instance, the representation of Hopf algebras
by quantized derivations and the algebra of differential operators. At the end of section 2
the quantized (left-)adjoint representation is presented. The third section is almost entirely
dedicated to the construction and investigation of¢kexterior algebra of forms which is,
besides the quantum enveloping algebra, one of the components to build up the quantum
standard complex. This is defined and studied in section 4. The main result of section 4 is
theorem 4.2 which shows the analogies of the quantum and the classical standard complex
for Lie algebras. The cohomology structure induced by the quantum Koszul complex is
exhibited and the non-exactness of this complex is explicitly exposed. Section 4 ends with
a brief discussion of modifications of the quantum Koszul complex where the sources of
non-exactness are removed and which therefore are shown to be exact. Finally, we refer the
reader to the appendix where we recall essential definitions and results [CDSWZ, CSWW,
DJSWZ, DSWZ, FRT, Res, Wor] needed especially for the studies in sections 3 and 4 and
partially for the investigations in section 2.

2. The algebra of quantized differential operators
We define representations of a Hopf algelitaby quantized derivations in an algebra
A. We denote byA, € and S the comultiplication, the counit and the antipode 7df

respectively.

Definition 2.1 A representationt of a Hopf algebraH by quantized derivations in an
algebraA is an algebra homomorphism

7 Uy(g) — End(A)
with the additional property

() (ab) = m(vy)(a)m(ve)(b) YveH a,beA (2.2)
where A(v) = vy ® vz is the notation of the coproduct of [Abe].

Especially for the quantum enveloping algebtagg) of Lie algebras g of typéi,, B,,
C, and D,, we can now formulate

1 When we speak of (vector) spaces and algebras we always @wactor spaces and associative, unital
algebras, respectively.
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Proposition 2.1 Let = be a representation df,(g) by derivations in an algebra and
let 7 (1y, () = id4. Then for all vector fieldskX € T C U,(g) the derivation vanishes at
the unity of A4, i.e.

T(X)(1g) =0 VXeT (2.2)
or equivalently
T(v)(1y) =€ (v) 1y Yv e U,(g). (2.3)

Proof. We label the vector field(sz) by capital indiced, i.e. (X;). Equation (A.5) can
then be written as '

AX) =X ® 1y, +01;, X, (2.4)
where®;; € U,(g) obeys the relations

A(©Or;) = Ok ® Oky €(®ry) =38, . (2.5)
Sincer is representation by derivations we have

T (X)) (b) = m(X)(b) + 7 (O1y)(b) m(X)(La) Vb e A
—=n(©O)) (X)L =0

and this yields

(X)) (L) = 7Ok STHO k) (L) (X 1) (14)

= 7Ok )T (SO k) (L)) T(X ) (1)
=0.

Equation (2.3) follows since the vector fields generdfég) and sincer (1y,(,)) = id4. O

Remark 1 For the construction in section 3 one has to use the vector fields as a generating
system to assure the closure of the one-forms under the adjoint action (see proposition 3.1).

Remark 2 Every representation @f, (g) by derivations in an algebtd is thus a bialgebra
representation of/,(g) in A, i.e. 7 (v)(14) = € (v) 14 Yv € U,(g) [Abe].

Now let L be the representation of a Hopf algelitaby left multiplication
Lw)(w)=vw Yo,weH (2.6)
and L 4 be the representation of in A ® H by left multiplication,
L(a)(b; ® v;) = (ab;) Qv; VaeA biQuv,ec AQH. 2.7)

Given a representation of H by derivations in4 we can combine it with the representation
L to a representation dff in the tensor spacgl ® H. We define

Ly = QL)A:H—>EndAQH). (2.8)
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Both L 4(a) and L (v) for fixeda € A andv € H are elements of Efdl ® H). In the
following we investigate the subalgeb& of End(A ® H) generated by thé 4(a) and
Ly (v) (a € A, v e H) and use the notatiol(a) := L 4(a), [(v) := Ly (v) Ya € Av € H.

Sy = (@)l (v)]a € Av e H). (2.9)

Proposition 2.2 Let = be a representation of the Hopf algelfiaby derivations in an
algebraA and letS, be the algebra according to (2.9). Th&nhas the following properties.
(i) The algebraS, is unital.

(i)
[(v)l(a) = (w(vay))(a)) l(ve) YVae A veH (2.10)

and every element € S, can be written in the form
s =Y la)l(v) (2.11)
wherea; € A andv; € H.
(i) If = is a bialgebra representation &f in A then
(@) [(S)) =1(S(vay)) (T (ve)(a)) Yaoe A veH. (2.12)

Proof. SinceA andH are unital we havé(14) = I(1y) = 1s,. We applyl(v) [(a) (where
veH, ac A)toan elemenb; ® u; € A® H and exploit the derivation properties of the
representation

() l(a)(b; ® u;) = m(v))(a) T (V) (b)) ® va)u;
=Il(m(ve)(@) l(ve) b ®u;).

Now the relation in (2.12) is an immediate consequence if we use the Hopf identities
m(S®id) A =m(id® S) A =noe. The structure of the commutation relations in (2.10)
admits an ordering like in (2.11) for evesye S, . O

Proposition 2.2 points to a close relation between the vector spdcest and S;,.
This is described in the following proposition.

Proposition 2.3 LetH, A, = andS, be like in proposition 2.2. Then there exists a vector
space epimorphisng, such that

AH — S,
I/IN : Zdi X v; = Zl(a,»)l(v,-) . (213)

If = is a bialgebra representation &f in .4 then,, is an isomorphism.

Proof. Obviously the mapping, is a bilinear vector space homomorphism. It is surjective
because of (2.11). & is a bialgebra representation then

I A4®@1y) =14Qu YueH
and thus
@) Iw)A1Q1y) =aQu YVae A ueH.

Henceyr,, is injective. O
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vec
SincesS,, is a unital algebra and, = A® H if 7 is a bialgebra representation we can
induce an algebra structure oh® H with the help of the mapping,, according to

Xy =Y (W () Y (1) (2.14)
which makes(A ® H =) a unital algebra [Swe].
Remark 1 The product %’ in (A ® H, *) is sometimes called a smash (or semi-direct)

product [Swe]. It does not coincide with the usual tensor multiplicatiofor the tensor
product of the two algebrad andH given bym = (m4 ® my)(id4 ® T ® idy).

Remark2 Asin sections 3 and 4 we work exclusively with the quantum enveloping algebra
U,(g) and since fo,(g) every representation by derivations is a bialgebra representation
(see proposition 2.1) we restrict our considerations to bialgebra representations henceforth.

Definition 2.2 The algebra(4 ® H, ) is called the algebra of quantized differential
operators of the bialgebra representatioiof H and is denoted by x, H.
The following lemma exhibits useful properties of algebras of differential operators.

Lemma 2.4 Letxw be a bialgebra representation of the Hopf algehirin the algebrad
and letA x, H be the corresponding algebra of differential operators. Then
(i)
alg alg
A=Z{a®@1lylaec A} < Ax, H

alg alg
HE{1yQuiveH} < Ax,H

and we can identify =a® 1y andv=1,® v Va e A, v e H.
(i) This identification yields

axv=a®vVae A veH
and everyx € A x, H can be written in the form

=Y axv (2.15)

wherea; € A, v; € H. Thus
x:Zai*vi=0<:> Zai®v,~=0.

(iii) For the ‘mixed’ commutation relations one find® € H, a € A
vxa =m(va)(a) * v
(2.16)
or axSw)=S8wa)*xm(ve)a).

Proof. Theinjectionsy: Asar—>a®lye Ax,Handiy: Hov—> 1,Qve Ax, H
are algebra homomorphisms. This can be seen if we use the multiplication rule (2.14) for
A x, H. With the help of the same rule we obtain € A, v e H

axv=_(aQ®1y) (1lyQv)
=¥ (@) (v))
=a@u.

Since the mapping,, is an algebra isomorphism the remaining part of lemmas 2.4.2
and 2.4.3 will follow immediately with propositions 2.2.2 and 2.2.3. O
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Finally, we consider the quantized (left-)adjoint representation of a Hopf alg€kira
a ‘H-bimoduleB. It is defined through

{ ‘H — End(B)
v = adv) == v () S(v) -

: (2.17)

Lemma 2.5 If B is an algebra then for the Hopf algebfd the quantized adjoint
representation ad is a bialgebra representatioR af 5.

Proof. Using the Hopf propertiesn(S ® id)A =noe and (d®e)A =id we find
immediatelyVu € H,v, w € B

adw)(vw) = u@y v Sue)us w Suaw)
= ad(u()) (v) adu ) (w)

and adv)(1z) = €(v) 15. Hence ad is a representation by derivations. O

3. The g-exterior algebra of forms

For the quantum enveloping algebrés(g) of Lie algebrasg of type A,, B,, C, and

D, the quantized adjoint representation is fh@nalogue of the adjoint representation of
the Lie algebrag or of the corresponding universal enveloping algebrg) [Jur, Wor].

The quantized adjoint representation will play a fundamental role in the construction of a
special algebra of differential operators which turns out to be a deformation of the classical
standard complex (or Koszul complex) of Lie algebras. The deformed complex is built of
the g-exterior algebra of forms and the quantized enveloping algebra. Before we define
the g-exterior algebra of forms we exhibit some properties of the adjoint representation
of U, (g).

Proposition 3.1 The vector space of vector fields of the quantum enveloping algebra
U, (g) is closed under the adjoint representation, i.e.

adu)(X) e T VueU,(g), XeT. (3.1)
Proof. With the help of (A.1) one finds
ad(L*))(X*) = L*,. X 5 (L*) .

The application of somée, R,)- or (C, R,)-identities [CSWW, FRT, Wor] and of (A.2)
then leads to

adLiij)(Xk]) = (R;Flkicb R\(}tlwlj) Xba (32)

and the statement of the proof follows since ad is representatioafd is generated by
the L* ;. O

Remark 1 Similar to [CSWW, Jur] it can be shown that:= S~1(T) is the corresponding
vector space dual to the space of left invariant elements of a bicovariant first-order
differential calculus [Wor]. Exploiting the results of [Wor] the statement of proposition 3.1
follows as an immediate consequence.
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Remark 2 The quantized Lie bracket
[X,Y]:=adX)(Y) VX, YeT (3.3)
is a bilinear product irff" [Worl].

Now we perform a basis transformation Thaccording to (A.7) and (A.8).

) i[j]
X { X0 for A, (34)
). ¢ for B,, C,, D,.
For A, a direct calculation yields on the one hand
ad Xy (xiUly = x M il _ aol(@k[;,][”a)(x"[ﬂ) xalb] (3.5)
and on the other hand
o 1 o o
ad(Xk[l])(X'["]) — ; (C[l]k xill _ clbla ad@k[b][l]a)(xl[']]))- (3.6)

We used equations (A.4) and (A.5) for the vector fields. To evalua(t@"@gma)(xim) we
need the explicit expression of tie&s in terms of theL*'; (see equation (A.5) below) and
the identity (3.2). Making use of several ﬁq)-relations we arrive, after some computation,
at

l ilj ~[1i ¢
ad(@k[b][ ]a)(X L1y = LIk e X0 (3.7)
where
[l il k

lafga =q " X (3.8)

[b] a [c] d

LNk

(graphical presentation of the matrix of the adjoint representatiad atting on the vector
fields X’; in the caseA,) according to the graphical representation (A.11) and (A.12).
Similar results are obtained fa&,, C,, and D, (graphical presentation of the matrix of the
adjoint representation @ acting on the vector field§; in the caseB,, C, and D,) where

j i1k
bacd = _' . (39)

b acd

&jilk

Henceforth we denote by : T® T — T ® T the linear mapping corresponding
to its matrix representation (3.8) fot, or (3.9) for B,, C,, D, and use the notation
c(X®Y) .= Y(S) ®X(S) VX, Y eT.
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Corollary 3.2 Let g be a Lie algebra of typd,,. Then the quantized Lie bracket
[X,Y]:XY—Y(S)X(S) VX,YeT
takes the form

(U1, X0} = XD kD UK o xele] et

1 ili A ili a c
= (CUV X4 MUy g, O 1) (3.10)
for the basiX’Ul} ¢ T c U,(g). In the cases oB,, C, and D, analogous results hold.

O
This suggests how to definegadeformation of the exterior algebra over a Lie algebra.

Definition 3.1 The algebra
A(T) := @ T®" [ (Ker(idre — o)) (3.11)
m=0

will be called a quantized of-exterior algebra of the quantum enveloping algeli&g).

Since A(T) is obtained by factorizing out a homogenous ideal, i.e.
I = (Ker(idrs> — 0)) = U N T
m=0

we find at once
A(T) = @ An(T) (3.12)
m=0

where A, (T) is the space of monomials ifi of degreem and Ayo(T) = C. In section 4

we will see that after introducing a derivative d in the algebra of differential operators

A(T) xa9 Uy(g), where ad is defined in proposition 3.4, the definition for theexterior

product follows immediately. This can be seen explicitly in the proof of theorem 4.2.
Before investigating extensions of the adjoint representatiob/,@g) to the algebra

A(T) we analyse the mapping. Similar as in [CSWW] one realizes

Proposition 3.3 The linear mapping : T ® T — T ® T is bijective and obeys the braid
group equation

(0 ®idr)(idr ® 0)(0 ®idr) = (idr ® 0)(0 ® idr)(ldr ® ). (3.13)
It admits a complete projector decomposition according to its minimal polynomial
(0 — idye2) (0 + g2 idye2) (0 + g 2idye2) = 0 (3.14)
for A,, and

(0 — idye2) (0 + g2idre2) (0 + g 2idze2) (0 + & ¢° N idye2)
x (0 + gV tidre2) (0 — e ¢* VN idre2) (0 — £ ¢V idge2) = 0
(3.15)

for B,, C,, andD,,.
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Proof. The matricess in (3.8) and (3.9) are invertible. Since the matridé,s obey the
braid group equation we can conclude from the structure tfat it also satisfies the braid
group equation. Using the projector decomposition of the matrﬁ;)eand R, given by
(A.13) for A, or the decomposition oR, given by (A.14) forB,, C, and D, one easily
proves equations (3.14) and (3.15). O

Proposition 3.4 For a Lie algebra of type A,,, B,,, C,, or D, let A(T) be theq-exterior
algebra ofU, (g) according to definition 3.1. Then there exists a unique mapping

ad" : U,(g) — End(A(T))

such that
() ad"(u);r = adw)r Yu € Uy(g),
(i) ad” is a representation df/,(g) by derivations.

Proof. In a frist step we define the mapping

ad® : U,(g) > EndT)

oo
T:=Pre"
&

(3.16)

through
oo o0
_ . . (m—1)
ad® = @acﬁ ._e@@(ad@) ®ad A
m=0 m=1 m times
where
(A@iduq(g)(@-"@idyq(g)) ----- A for m>0
A(m) = (m—1) times
iqu(g) for m=0.

One immediately verifies that &ds a representation df,(g) by derivations in7. In the
next step we shall make use of

Lemma 3.5 For any ideall c 7 such that
ad®u)(I) c I Yu € U,(g)
the canonically induced mapping
ad® : U,(g) — End(T/I)

is a representation d, (g) by derivations in7 /1.

Proof For allu € U,(g), 7 € T/I we havead®(u)(7) = ad®(u)(r) for anyr e 7 c 7.
Hence

ad®(u) (T 1) = ad® (u1)) (7)) adP (u)) (1) .

The representation properties are evident. |
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To prove the statement of the proposition it is sufficient to show that
ad® (X) (Ker(idyez — 0)) C Ker(idrez — o) VXeT
since ad is representation anfi generated/,(g). From proposition 3.3 we conclude
Ker(idrs: — o) = Im(Py(0))
where the projectoP; (o) is given by
Pi(0) = N (0 + ¢%idre2) (0 + g 2 id7e2) (3.17)
for A,, and

Pi(0) = N'(0 + g?idpez) (0 + g 2idre2) (0 + £ ¢° VL idpe2)
x (0 + gV tidre) (0 — e g* N idpe2) (0 — e ¢V L id e2) (3.18)
for B,, C, and D,. N and N\’ are normalization constants.
In the case ofA,, let
X = Apyjpg X' X7 € Ker(idyez — o)
<X € Im(P1(0))
Ay = (B - Pu(@)i
with some row vectoB. Now apply (idys2 — o) to ad® (X)) (X):

(idps2 — o) ad® (XU (X)
1A (C
= 5 Aleldtelf

x (idyez — o) (XM @ X0y

Pl gleldlels e~ Gl Bl e sldleh o clsY

where we used the relation (3.10). We evaluate the action of the linea(itap— o) on
(x4l @ X"y and use the fact that - (1 — §) = 0. Then we obtain:

H i[j 1 ~ [i]j[b]a S m]n

(idyez — o) ao®(X []])(X) — _X (ALl &LililP] (Klile] f a[g]h[k]l[m]n[c]d clml )

X (1 — &)[C]d[e]f[r]s[t]u Xu[t] ® Xs[r]

graﬁhics

(1- 5)[C]d[€]f[r]s[l]u xu1 & x3l]

(graphical presentation of the matrix of the adjoint representation of the vector kéJds
acting on an element of the kernel of(id — o) in the cased,). Sinced obeys the braid
group relation (3.13)P1(6) is a polynomial inG andA = (B - P1(6)) for some row vector
B we obtain

ad® (XU (X) e Ker(idys2 — o).

Analogous results hold foB,, C, and D,. Together with lemma 3.5 this concludes the
proof. O
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4. Cohomology of quantum enveloping algebras

We are now in a position to build a complex which yields the deformed homology and
cohomology structures otl,(g). Let ¢ be a Lie algebra of typd,, B,, C, or D,. Then

we can construct the algebra of differential operators of the adjoint representatiosf ad
U,(g) in A(T):

K(q,8) = A(T) xaq Uy(g) . (4.1)

There arise slight complications in the notation sikcgy, g) contains two different copies
of T, one inU,(g) and the other i\ (7). Therefore we denote the vector space of vector
fields contained iU, (g) by T and the elements of by X, ¥, ....

Proposition 4.1 (i) The algebraK (¢, g) is a graded algebra.

m=0

whereK,,(q, g) = Aw(T) % Uy(g).
(i) In K(q, g) there exists a unique grade indicating algebra isomorpkissuch that
14 (km) - (_1)mkakm S Km(q’ g)

Proof. Adl LetX eT C A(T),v € U,(g). Then lemma 2.4.3 and proposition 3.1 yield
vk X = ad“(v(l))(X) * V) = Xél) * V(2

Wherexgl) € T. Hence using lemma 3.8,,(T)«U,(g) = Uy (g) * A, (T) Vm € NO. Since
A(T) =P An(T) and A, (T) x Ap(T) C Apyp(T) the statement follows easily with
the help of lemma 2.4.2.

Ad 2 The consistency of the definition gfis obviously sinceyy, ;) = idy, () and the
algebra relations are grade preserving according to the graded Ap&ge Then bijectivity
and uniqueness can be deduced immediately. |

Now everything needed is provided to state

Theorem 4.2 Let g be a Lie algebra of typ&i,, B,, C, or D, and letK(q, g) be the
corresponding algebra of adjoint differential operators according to (4.1). Then there exists
a unique exterior derivative

d:K(g,8) — K(q,8)

such that
(i) d is U, (g)-module morphism.
(ii)
dX)=X VX eT C AT

(4.3)
dk ) =d &) 1+ y (k) «d (D) Vk, be K(q.g).
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Proof. The consistency of properties (i) and (ii) must be checked only on relations which
completely determine the algebk&aq, g) sincey and d (by definition) preserve associativity
and the relations. Because of lemma 2.4 there are three kinds of essential algebraic relations:

(i) Pure U, (g)-relations which are satisfied automatically as @, = 0.

(i) Pure A(T)-relations.

(iii) Mixed relations given by (2.16).

For the calculations we restrict t44,. The results forB,, C,, and D, are similar. The
consistency of the definition of d with the mixed relations (2.16) is easily verified if we use
the basis{X“®!} ¢ T c U,(g) and{X1} ¢ T c A(T) and exploit equations (3.5) and
(3.10):

d (f(k[l] xilil _ ad’\(f(k[ll)(xi[j]) _ a&(@k[r][lls)(xi[j]) XS["])

= XM iU _ [ xA0 g gLk el el

=0.
Finally, lety = Appp X'™M® XU1 be an arbitrary element in Kéd =2 —o) or equivalently
stated letA be an arbitrary vector in K&t — 67). Then we have = 0 € A(T). Making
use of the relations (2.16) the application of d yields

d(y) =Agipg (XM 5 XY — X1 Zili)
=A[j]i[k]l<;|;(c[l]k 55} 5[[i]] _ &[j]i[l]k[a]b[u]v C[a]b) xvlu]
— (L= &)Uk X0l Xb[a])
For the matrixs the folowing identity holds:
a[j]i[l]k[a]b[u]v clab — (52)[j]i[l]k[u]v[a]b clalb (4.4)

which can be verified immediately if we use graphical notation and apply s{@nféq)-
relations. Hence

o 1 . -
d(¥) = Appipg X — OV g, (A (L + )P gy €1V x el — el X”[“]) =0
sinceA e Ker(1—6T). Conversely if dj’) = 0 wherey’ = A'tjjipy X' @ XU, it follows
that A’ € Ker(1 —67). O
A straightforward consequence of theorem 4.2 is

Corollary 4.3 The derivative d is nilpotent and anticommutes with It mapsk,,(q, g)
into K,,-1(q, &)-

=0
dy+yd=0 (4.5)
d(K,(q,8) C Knu-1(q, g) .

Hence(K (¢, g), d) is a complex. O
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As the derivative d is &/, (g)-module morphism we can construct cohomologies of the
quantum enveloping algebi, (g) which are deformations of the classical cohomologies of
Lie algebras. For that purpose we consider an arbittaig)-module M. Sincek,,(q, g)

vm e NO is aU,(g)-module we can define the vector spaceligf g)-module morphisms

L(g.8) = P Lu(q. 8) = ) Homy, ;) (Ku(g. 8). M) (4.6)
m=0

m=0

Now let d, := dx, .o ¥m € NO. With the help of the usual arguments one concludes
that the mapping,, := - o d,1 ¥m € N is a U,(g)-module morphism which maps
Ly(q,8) to L,11(q, g). Denote the coboundary operator ®y= @;_,3,. This yields

8% = 0 and thus(L(q, g), 8) is the desired (cochain) complex which defines cohomology
groups ofU,(g) relative to theU,(g)-module M. The obtained cohomology structure is

a deformation of the Koszul cohomology for Lie algebras. However, there is a difference
between the classical and the quantum result since the quantized sequence

€ d d d
C «— Ko(q,8) = U,(g) < Ki1(q,8) < Ka(q, g) < -+~ (4.7

is no more exact. The reason is that in the quantum case we have estalftishel)?
linearly independent vector fields fer, instead of(n 4+ 1) — 1. Similar things happen for

B,, C, and D,. The required dimensional restriction in the quantum enveloping algebra
U, (g) takes place in higher-order relations, namely in the invertibility relations mentioned in
the appendix. To verify the non-exactness of the sequence (4.7) we consider for simplicity
the cased; where the additional contracted relationlif)(g) is given by

Djraa X' XN +2¢7 e XM =0 (4.8)
here D is a matrix formed ofR, ande. Thus the element

2(X, X) := Djraa X % XN +2q7 e XM (4.9)
is closed, dz) = 0. Now suppose is exact, i.edy(X, X) € Ka(g, g) of the form

VX X) = X9 X f(Kani (4.10)

such that ¢ = z. Using the linear independence of the &§et"/); ;} and lemma 2.4.3 one
obtains

1 A2\ i uv v —
; (1= 62" sy € € (f X)jinr) = 29 ap - (4.11)

If we contract in equation (4.11) the free indices witl’ and employ the identity
(62)7 1 i 890 €40 = g7 g!% we arrive at 0= 2 (¢ + ¢~1). This is a contradiction and it is

thus proven that the sequence (4.7) is not exact. In a very similar way the non-exactness
is shown for allA,, and forB,, C, and D,.. In the case of4, it is possible to show that

the factorizationz (X, X) = 0 is not compatible with the exterior product. Thus one cannot
use relation (4.9) for a dimensional reduction of the exterior algebra. Therefore the element
(4.9) destroys the exactness of the sequence.
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In the remaining part of our work we restrict ourselves to the sefies We sketch
someA,-specific facts without going into detail.

(i) For A, there exists essentially one invertibility relation which controls the required
dimensional restriction iU/, (g). One can thus prove that only one integrated one-form
(relative to the grading itk (¢, g)) is responsible for the destruction of the exactness in the
spaceki(q, 8)-

(i) We construct an algebr&’(q, g) generated by vector field(sf(”‘[f]),-,[j] and by
one-forms(X’Uy; ;; with relations

A~ hh ot 1 <7, 1 S ili v
1- G)[l]k[j]l[b]a[c]d xdlel xralb] — ; 1- 52)[]]k[j]l[b]a[c]d cled xralb]
XNy GUKY e et (4.12)
1 K N
=3 (1- UZ)U]k[J]l[b]a[C]d cleld xralb]

and

Apjp XM X' =0
A cKerl-6") (4.13)

where we use the notation and tldematrix of A, according to (3.8). Denote by
T’ := [(X"1)); ;1]c € K'(¢. g) the vector space of vector fields and Ay, C K'(¢, g) the
vector space of monomials i(rK’i[f]),-_[_,] of degreem € N°. Then a proposition analogous
to proposition 4.1 holds if we replad€(q, g) by K'(q, ). Kn(q. 8) by K|, (¢, &), An(T)
by A’y Uy(g) by K'o(g, g) andy by y’. Likewise in theorem 4.2 a derivativé dan be
established oK’ (¢, g) such that tis a K'o(¢, g)-module morphism and has corresponding
properties as d in (4.3).

Now for the complex(K'(q, g), d) the exactness can be conjectured (at least; fer
root of unity). We proceed in a similar way as in [Jac].

We define the space

J
0= Y (414)
i=0

whereT’° = C and the space

K'V(q, g) = Z AT (4.15)
h+k<j

It can be shown that
J
K'V(q,g) = @ A, T (4.16)
m=0

Since(K'Y)(q, g));ene is a filtration of K'(q, g) we are able to define the associated graded
algebrak.' (¢, g) [Jac].
o0
K/(q.8) =P K/ nq. 8
m=0

’ 1(m r(m— (417)
K/ (g, 8):=K'""™(q,g) / K'Y, g

K'"Y(g,8) = {0}.
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This algebra can be regarded as theommutative analogue of the Koszul complex of a
certain commutative Lie algebra. Sin&&" (g, g) is a subcomplex oK’(g, g) it follows
that (K./ (g, g), d" := dxmg.e ) IS a complex, the so-calledth difference complex. If

it is possible to prove thatk,’, (¢, g), d") Ym € N is exact one deduces like in [Jac] the
exactness ofK’(q, g), d). The algebra&.'(¢, g) can be identified as the algebra generated
by the generatorsT’ll), (;; and (Tl/1), [;; which obey the relations

(1 — &)k gy T4 Tl — 0

. . . 3 (4.18)
(1 — &)Y 0 TN THO UKL el Falé] — g
and
A TW T =0
—AcKerl-6"). (4.19)

Then the subspaces.’, (¢. g) are the spaces of monomials ('], 741, ;1 of total
degreem. To prove the exactness oK. ,, (¢, g), d") Vm € N it suffices to find a linear
map D,, in K. ,,(g, g) such that

D,, d” + d" D,, =idg. . (4.20)
'm(q.8)

We abbreviate formally the tensor element:= 7%l . ... Tl phlhl o eI,
The matrixg is defined through

~[i]j[k]! . ~ [k)I[i])
GUUK L gl (4.21)

ands; = (L ®@) - - ®u-1).0 ®u+1). " * - Qum). 1as) Wherel,; = (P,) (see definition (A.11)).
Then we get for > 2

r—1

d () = [Z(&k“ ..... 5r1)] b 1541 - (4.22)
k=0

Forr € {0, 1} the results are obvious. Now we make the ansatz
Dr+x (tr,s) = )\:jgrstr+l,x—l (423)

with A7** a matrix which has to be determined. Equation (4.20) yields

Ao=0 (4.24)
(A5 =D tos =0 (4.25)
AFrGi - +agl, - )n, =0 (4.26)

and

r—1 r
(Z(—l)k Geyr G DN A D (D Grga -6 - 1) frs =0

k=0 k=0
(4.27)
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for r > 2. The representation theories bf(g) and of U,(g) for {¢g # root of unity}

are equivalent [Res], the matrix admits a complete projector decomposition according
to proposition 3.3 and the projectd (6) in (3.17) has the formP(6) = (P, PH) +
(P, PO (for notation see [CSWW, FRT]). For= 0 we have the additional condition

(L—&) Ay, 1,1 =0V €f{l,...,s — 1) (4.28)

which arises from the application db,, to the identity(1 —&;) o, = 0. Fors = 2 we
obtaini3, = P1(). Then fors > 2 we can construct a totally-symmetric tensor similar
as in [HW]. One has to use the matrix

o = q2 (75(+)’ 7)(+)) + q72 (ﬁ(*)’ 'p(*)) _ (75(+)’ 7)(*)) _ (75(7)’ 7)(+)) (4.29)

as a braid matrix. Hence we conjecture thg{ := {totally g-symmetric projector in the

index pairs(i,[j.])a=1....s} €Xists in thesth tensor representation corresponding to the matrix

o (or &), that for these representations a complete projector decomposition is possible and
then there should exist a covariant solution of #j&’ such that the matrix coefficients in
(4.26) and (4.27) vanish independentlyzof. All this yields the exactness of the complex
(K'(q, 8), d).
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Appendix

The quantum enveloping algebtg (g), ¢ € C\ {1} for Lie algebras g of typ&i,, B,, C,
and D, is Hopf algebra isomorphic to a certain minimal completion of the Hopf algebra of
regular functionals of the corresponding quantum group [FIRT]g) is then generated by

.....

for C,, D,) which in particular obey the Hopf relations

A(L:I:lj) = L:I:ik ® L:tkj

e(L* ) = 5; (A1)
61_(”;1 kodai 74l +1
S(Lii ) = [n] I gttt kp - L "kn Ejly. 0y for A,
J/ q*
Cki Li[k C]l for Bna Cna Dn

and the commutator relations

pJji +k +1 +i +j pb

jo]l]k L v L w = L la L jb Rqawu ( )
A.2

pJji +k —1 —i +j pb

chlllk L v L w = L la L Jh Rqawv

where A, € and S are the comultiplication, counit and antipode @f(g), respectively,
Eiriny = (D" - gt = (—¢)"@) if [(o) is the minimal number of transpositions of
the permutationr = (-~ "** = gt = 0 else, f],! is the usualg-factorial

; . Eii
i1 ... ln+1)’ 11...0p+1
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[CSWW] andC;; is the usual-metric [FRT]. TheI?,,-matrices for the respective quantum
groups are taken from [FRT]. We use a summation rule throughout the paper if not otherwise
mentioned.

The ﬁq-matrices, the metri€ and thes-tensor obey various useful relations [CSWW,
FRT, Res]. For instance we have a projector equatiomfpr

8k/+1...k"+1i1mi/ — 8i1...i1 kiya...k

o +1 S
Ejreci ks kngr " Ely kst 1

= (=" gCD 41— 1, (P (A.3)

(P)) is the projector to théth-orderg-antisymmetric tensor representation.
The vector fields defined in [CDSWZ]

. 1 . .

X'y = Lo — S (A.4)
have a comultiplication

AX')) =X ® 1y, + 0% ® X'y (A.5)
where®*;; = L+, S(L7*;) andx = (¢ — ¢~ 1). Additionally the vector fields satisfy some
kind of invertibility and commutation relations [DJSWZ] which can be deduced from the
identities (A.1) and (A.2). The sdtx’;}; ; is linearly independettin U,(g). The vector
space of vector fields will be denoted by

T:=[X'|X;eU/(9lc- (A.6)

In [Bur, DJSWZ] it is shown thaf" generated/,(g) up to a certain completion. Similar
to [CSWW] we preform linear transformations with the matrices

UV - gl L
CYY = gltedn i[j]1 == W i j1orn (A7)
4!
according to

for A, and analogously foB,, C, and D, with the metricC” andC;;.
To simplify expressions we use graphical notation [CSWW, Res]. The fundamental
guantities are denoted by

Ii’;f W= R7Y,, = i (A.9)

T This is true if some root-of-unity values fgr are excluded, which will be assumed henceforth.
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(graphical presentation of thR-matrix R and of the inverse of th&-matrix R)

i (n+1)

Eitevinr =

i, i, (1) (A.10)

i ]

(graphical presentations of the covariajt-tensor in the casel,, of the contravariant
g-e-tensor in the casd,,, of the covarianty-metric in the caseB,, C, and D,,, and of the
contravariany-metric in the caseB,, C, and D,).

For A, the projector(P,) will be represented graphically.

[i]
(P, = (A11)
[
(graphical presentation of the project®r on theg-antisymmetrio:-tensors in the casg,).
The notation
[i] [il (il i [ [l
RV = RW g = Ry, =

K [l K [l ik |
(A.12)

(graphical presentations of thR-matrix corresponding to the braiding of two copies of
the space ofj-antisymmetricn-tensors in the casd,, of the R-matrix corresponding to

the braiding of the space af-antisymmetricn-tensors with the canonical vector space
representation in the cas¢,, and of the R-matrix corresponding to the braiding of the
canonical vector space representation with the spaggafitisymmetricn-tensors in the
caseA,) is then evident. The inverse matrices have analogue structure. Since the matrix
1?;-’ « Satisfies the Hecke equation

(R—gD(R+q =0 (A.13)

the matrixfz[qi]”][k]m =g b I?g]“][k][l] obeys the same relation. In the casesBpf C,
and D, the matrixR, enters in representations of teevm algebra [FRT].

Ry —qD(R, +¢ )R, —eq¢° V1) =0 (A.14)

wheree = 1 for B,, D, ands = —1 for C,.
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