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Abstract. We consider quantized derivation representationsπ of Hopf algebrasH in some
associative algebrasA. The algebra of quantized differential operatorsA ×π H of bialgebra
representations, which are special representations by derivations, are constructed. For the
quantum enveloping algebrasUq(g) of Lie algebras associated with the root systemsAn, Bn,
Cn andDn we define a deformation3 of the exterior algebra of forms, and by applying the
above results it is shown that the quantized adjoint representation ofUq(g) induces a bialgebra
representation ad∧ of Uq(g) in 3. The resulting algebra of differential operators3×ad∧ Uq(g)
is a deformation of the standard Koszul complex of Lie algebras. It admits an exterior derivative
which is, in particular, aUq(g)-module morphism. Hence cohomology groups ofUq(g) relative
to someUq(g)-moduleM can be constructed.

1. Introduction

For several kinds of quantum groups bicovariant differential calculi were developed
[CSWW, Jur, Wor]. They provide higher-order differential calculi0∧ with an exterior
derivative D so that (0∧,D) is a complex. Especially for the quantum groups of Lie
algebrasg of typeAn, Bn, Cn andDn the differential calculi, where the algebra generated
by the (left-invariant) vector fields is equivalent to the quantum enveloping algebraUq(g),
are of particular interest [CSWW, Jur]—the complex(0∧,D) can then be considered as
a deformation of the de Rham complex of the corresponding Lie group. The resulting
cohomology groups are in general different from the classical ones [Gri].

In the classical theory besides the de Rham cohomology of Lie groups a cohomology
structure for Lie algebras exists which is initiated by the so-called standard or Koszul
complex of Lie algebras [CE, HS, Jac]. Key ingredients for the explicit construction are
the exterior algebra over the Lie algebra, the adjoint representation of the Lie algebra and
the induced algebra of differential operators [Jac].

The aim of this paper is the construction of a complex over the quantum enveloping
algebraUq(g) for Lie algebrasg of typeAn, Bn, Cn andDn which yields a homological
structure and admits a (dual,Uq(g)-modular) cohomology. This complex turns out to be a
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deformation of the classical Koszul complex for Lie algebras. We show that all essential
results of the classical theory can be generalized to the quantum case. Especially the
nilpotent derivative d has analogous properties. Though there are differences between the
classical and the standard complex. Namely the quantum Koszul complex is no more exact
and it seems therefore that no categorial definition is possible for the cohomologies ofUq(g),
a fact which already appeared in the construction of differential calculi of quantum groups.
Nevertheless, there is some uniqueness for the homology and cohomology structures of
Uq(g) since vector fields are used which generateUq(g)—we conjecture the independence
of the cohomologies of the differentUq(g)-generating sets of vector fields.

For a better understanding of the paper we presuppose knowledge of Hopf algebras and
quantum groups [Abe, Dri, FRT]. Section 2 begins with an introduction to basic concepts
needed in the course of our work like, for instance, the representation of Hopf algebras
by quantized derivations and the algebra of differential operators. At the end of section 2
the quantized (left-)adjoint representation is presented. The third section is almost entirely
dedicated to the construction and investigation of theq-exterior algebra of forms which is,
besides the quantum enveloping algebra, one of the components to build up the quantum
standard complex. This is defined and studied in section 4. The main result of section 4 is
theorem 4.2 which shows the analogies of the quantum and the classical standard complex
for Lie algebras. The cohomology structure induced by the quantum Koszul complex is
exhibited and the non-exactness of this complex is explicitly exposed. Section 4 ends with
a brief discussion of modifications of the quantum Koszul complex where the sources of
non-exactness are removed and which therefore are shown to be exact. Finally, we refer the
reader to the appendix where we recall essential definitions and results [CDSWZ, CSWW,
DJSWZ, DSWZ, FRT, Res, Wor] needed especially for the studies in sections 3 and 4 and
partially for the investigations in section 2.

2. The algebra of quantized differential operators

We define representations of a Hopf algebraH by quantized derivations in an algebra†
A. We denote by1, ε and S the comultiplication, the counit and the antipode ofH,
respectively.

Definition 2.1. A representationπ of a Hopf algebraH by quantized derivations in an
algebraA is an algebra homomorphism

π : Uq(g)→ End(A)

with the additional property

π(v)(a b) = π(v(1))(a)π(v(2))(b) ∀v ∈ H a, b ∈ A (2.1)

where1(v) = v(1) ⊗ v(2) is the notation of the coproduct ofv [Abe].

Especially for the quantum enveloping algebrasUq(g) of Lie algebras g of typeAn, Bn,
Cn andDn we can now formulate

† When we speak of (vector) spaces and algebras we always meanC-vector spaces and associative, unitalC-
algebras, respectively.
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Proposition 2.1. Let π be a representation ofUq(g) by derivations in an algebraA and
let π(1Uq(g)) = idA. Then for all vector fieldsX ∈ T ⊂ Uq(g) the derivation vanishes at
the unity ofA, i.e.

π(X)(1A) = 0 ∀X ∈ T (2.2)

or equivalently

π(v)(1A) = ε (v)1A ∀v ∈ Uq(g) . (2.3)

Proof. We label the vector fields(Xij ) by capital indicesI , i.e. (XI ). Equation (A.5) can
then be written as

1(XI ) = XI ⊗ 1Uq(g) +2IJ ⊗XJ (2.4)

where2IJ ∈ Uq(g) obeys the relations

1(2IJ ) = 2IK ⊗2KJ ε (2IJ ) = δIJ . (2.5)

Sinceπ is representation by derivations we have

π(XI )(b) = π(XI )(b)+ π(2IJ )(b) π(XJ )(1A) ∀b ∈ A
⇐⇒π(2IJ )(·) π(XJ )(1A) = 0

and this yields

π(XI )(1A) = π(2KJ S
−1(2IK))(1A) π(XJ )(1A)

= π(2KJ )(π(S
−1(2IK))(1A)) π(XJ )(1A)

= 0 .

Equation (2.3) follows since the vector fields generateUq(g) and sinceπ(1Uq(g)) = idA. �

Remark 1. For the construction in section 3 one has to use the vector fields as a generating
system to assure the closure of the one-forms under the adjoint action (see proposition 3.1).

Remark 2. Every representation ofUq(g) by derivations in an algebraA is thus a bialgebra
representation ofUq(g) in A, i.e. π(v)(1A) = ε (v)1A ∀v ∈ Uq(g) [Abe].

Now let L be the representation of a Hopf algebraH by left multiplication

L(v)(w) = v w ∀v,w ∈ H (2.6)

andLA be the representation ofA in A⊗H by left multiplication,

LA(a)(bi ⊗ vi) := (a bi)⊗ vi ∀a ∈ A bi ⊗ vi ∈ A⊗H . (2.7)

Given a representationπ of H by derivations inA we can combine it with the representation
L to a representation ofH in the tensor spaceA⊗H. We define

LH := (π ⊗ L)1 : H→ End(A⊗H) . (2.8)
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Both LA(a) andLH(v) for fixed a ∈ A and v ∈ H are elements of End(A⊗H). In the
following we investigate the subalgebraSπ of End(A ⊗ H) generated by theLA(a) and
LH(v) (a ∈ A, v ∈ H) and use the notationl(a) := LA(a), l(v) := LH(v) ∀a ∈ Av ∈ H.

Sπ := 〈(l(a)l(v))| a ∈ Av ∈ H〉 . (2.9)

Proposition 2.2. Let π be a representation of the Hopf algebraH by derivations in an
algebraA and letSπ be the algebra according to (2.9). ThenSπ has the following properties.

(i) The algebraSπ is unital.
(ii)

l(v) l(a) = l(π(v(1))(a)) l(v(2)) ∀a ∈ A v ∈ H (2.10)

and every elements ∈ Sπ can be written in the form

s =
∑
i

l(ai) l(vi) (2.11)

whereai ∈ A andvi ∈ H.
(iii) If π is a bialgebra representation ofH in A then

l(a) l(S(v)) = l(S(v(1))) l(π(v(2))(a)) ∀a ∈ A v ∈ H . (2.12)

Proof. SinceA andH are unital we havel(1A) = l(1H) = 1Sπ . We applyl(v) l(a) (where
v ∈ H, a ∈ A) to an elementbi ⊗ ui ∈ A⊗H and exploit the derivation properties of the
representationπ

l(v) l(a)(bi ⊗ ui) = π(v(1))(a) π(v(2))(bi)⊗ v(3)ui
= l(π(v(1))(a)) l(v(2))(bi ⊗ ui) .

Now the relation in (2.12) is an immediate consequence if we use the Hopf identities
m(S ⊗ id)1 = m(id⊗ S)1 = η ◦ ε. The structure of the commutation relations in (2.10)
admits an ordering like in (2.11) for everys ∈ Sπ . �

Proposition 2.2 points to a close relation between the vector spacesA ⊗ H and Sπ .
This is described in the following proposition.

Proposition 2.3. Let H, A, π andSπ be like in proposition 2.2. Then there exists a vector
space epimorphismψπ such that

ψπ :


A⊗H→ Sπ∑
i

ai ⊗ vi 7→
∑
i

l(ai) l(vi) . (2.13)

If π is a bialgebra representation ofH in A thenψπ is an isomorphism.

Proof. Obviously the mappingψπ is a bilinear vector space homomorphism. It is surjective
because of (2.11). Ifπ is a bialgebra representation then

l(u)(1A ⊗ 1H) = 1A ⊗ u ∀u ∈ H

and thus

l(a) l(u)(1A ⊗ 1H) = a ⊗ u ∀a ∈ A u ∈ H .

Henceψπ is injective. �
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SinceSπ is a unital algebra andSπ
vec∼= A⊗H if π is a bialgebra representation we can

induce an algebra structure onA⊗H with the help of the mappingψπ according to

x ∗ y := ψ−1
π (ψπ(x)ψπ(y)) (2.14)

which makes(A⊗H ∗ ) a unital algebra [Swe].

Remark 1. The product ‘∗ ’ in (A⊗H, ∗ ) is sometimes called a smash (or semi-direct)
product [Swe]. It does not coincide with the usual tensor multiplicationm for the tensor
product of the two algebrasA andH given bym = (mA ⊗mH)(idA ⊗ τ ⊗ idH).

Remark 2. As in sections 3 and 4 we work exclusively with the quantum enveloping algebra
Uq(g) and since forUq(g) every representation by derivations is a bialgebra representation
(see proposition 2.1) we restrict our considerations to bialgebra representations henceforth.

Definition 2.2. The algebra(A ⊗ H, ∗ ) is called the algebra of quantized differential
operators of the bialgebra representationπ of H and is denoted byA×π H.

The following lemma exhibits useful properties of algebras of differential operators.

Lemma 2.4. Let π be a bialgebra representation of the Hopf algebraH in the algebraA
and letA×π H be the corresponding algebra of differential operators. Then

(i)

A
alg∼= {a ⊗ 1H|a ∈ A}

alg
6 A×π H

H
alg∼= {1A ⊗ v|v ∈ H}

alg
6 A×π H

and we can identifya = a ⊗ 1H andv = 1A ⊗ v ∀a ∈ A, v ∈ H.
(ii) This identification yields

a ∗ v = a ⊗ v ∀a ∈ A v ∈ H
and everyx ∈ A×π H can be written in the form

x =
∑
i

ai ∗ vi (2.15)

whereai ∈ A, vi ∈ H. Thus

x =
∑
i

ai ∗ vi = 0⇐⇒
∑
i

ai ⊗ vi = 0 .

(iii) For the ‘mixed’ commutation relations one finds∀v ∈ H, a ∈ A
v ∗ a = π(v(1))(a) ∗ v(2)
or a ∗ S(v) = S(v(1)) ∗ π(v(2))(a) .

(2.16)

Proof. The injectionsiA : A 3 a 7→ a⊗1H ∈ A×πH andiH : H 3 v 7→ 1A⊗v ∈ A×πH
are algebra homomorphisms. This can be seen if we use the multiplication rule (2.14) for
A×π H. With the help of the same rule we obtain∀a ∈ A, v ∈ H

a ∗ v = (a ⊗ 1H) (1A ⊗ v)
= ψ−1

π (l(a) l(v))

= a ⊗ v .
Since the mappingψπ is an algebra isomorphism the remaining part of lemmas 2.4.2

and 2.4.3 will follow immediately with propositions 2.2.2 and 2.2.3. �
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Finally, we consider the quantized (left-)adjoint representation of a Hopf algebraH in
a H-bimoduleB. It is defined through

ad :

{ H→ End(B)
v 7→ ad(v) := v(1) (·) S(v(2)) . (2.17)

Lemma 2.5. If B is an algebra then for the Hopf algebraH the quantized adjoint
representation ad is a bialgebra representation ofH in B.

Proof. Using the Hopf propertiesm(S ⊗ id)1 = η ◦ ε and (id⊗ ε)1 = id we find
immediately∀u ∈ H, v, w ∈ B

ad(u)(v w) = u(1) v S(u(2)) u(3) w S(u(4))
= ad(u(1))(v) ad(u(2))(w)

and ad(v)(1B) = ε(v) 1B. Hence ad is a representation by derivations. �

3. The q-exterior algebra of forms

For the quantum enveloping algebrasUq(g) of Lie algebrasg of type An, Bn, Cn and
Dn the quantized adjoint representation is theq-analogue of the adjoint representation of
the Lie algebrag or of the corresponding universal enveloping algebraU(g) [Jur, Wor].
The quantized adjoint representation will play a fundamental role in the construction of a
special algebra of differential operators which turns out to be a deformation of the classical
standard complex (or Koszul complex) of Lie algebras. The deformed complex is built of
the q-exterior algebra of forms and the quantized enveloping algebra. Before we define
the q-exterior algebra of forms we exhibit some properties of the adjoint representation
of Uq(g).

Proposition 3.1. The vector space of vector fieldsT of the quantum enveloping algebra
Uq(g) is closed under the adjoint representation, i.e.

ad(u)(X) ∈ T ∀u ∈ Uq(g), X ∈ T . (3.1)

Proof. With the help of (A.1) one finds

ad(L±ij )(Xkl) = L±i rXklS(L±r l) .

The application of some(ε, R̂q)- or (C, R̂q)-identities [CSWW, FRT, Wor] and of (A.2)
then leads to

ad(L±ij )(Xkl) = (R̂∓1ki
q cb R̂

±1ca
q lj ) X

b
a (3.2)

and the statement of the proof follows since ad is representation andUq(g) is generated by
theL±ij . �

Remark 1. Similar to [CSWW, Jur] it can be shown thatT̂ := S−1(T ) is the corresponding
vector space dual to the space of left invariant elements of a bicovariant first-order
differential calculus [Wor]. Exploiting the results of [Wor] the statement of proposition 3.1
follows as an immediate consequence.
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Remark 2. The quantized Lie bracket

[X, Y ] := ad(X)(Y ) ∀X, Y ∈ T (3.3)

is a bilinear product inT [Wor].

Now we perform a basis transformation inT according to (A.7) and (A.8).

Xij 7→
{
Xi[j ] for An

Xij for Bn, Cn, Dn .
(3.4)

For An a direct calculation yields on the one hand

ad(Xk[l])(Xi[j ]) = Xk[l] Xi[j ] − ad(2k
[b]

[l]
a)(X

i[j ])Xa[b] (3.5)

and on the other hand

ad(Xk[l])(Xi[j ]) = 1

λ
(C [l]k Xi[j ] − C [b]a ad(2k

[b]
[l]
a)(X

i[j ])) . (3.6)

We used equations (A.4) and (A.5) for the vector fields. To evaluate ad(2k
[b]

[l]
a)(X

i[j ]) we
need the explicit expression of the2’s in terms of theL±ij (see equation (A.5) below) and
the identity (3.2). Making use of several(ε, R̂q)-relations we arrive, after some computation,
at

ad(2k
[b]

[l]
a)(X

i[j ]) = σ̂ [j ]i[l]k
[b]a[c]d X

d[c] (3.7)

where

σ̂ [j ]i[l]k
[b]a[c]d = q−(n−1)

i [ l] k[ j]

[b] a [c] d

-
- (3.8)

(graphical presentation of the matrix of the adjoint representation of2 acting on the vector
fields Xij in the caseAn) according to the graphical representation (A.11) and (A.12).
Similar results are obtained forBn, Cn andDn (graphical presentation of the matrix of the
adjoint representation of2 acting on the vector fieldsXij in the caseBn, Cn andDn) where

σ̂ j ilkbacd =
j i l k

b a c d

-
-

. (3.9)

Henceforth we denote byσ : T ⊗ T → T ⊗ T the linear mapping corresponding
to its matrix representation (3.8) forAn or (3.9) for Bn, Cn, Dn and use the notation
σ (X ⊗ Y ) := Y(s) ⊗X(s) ∀X, Y ∈ T .
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Corollary 3.2. Let g be a Lie algebra of typeAn. Then the quantized Lie bracket

[X, Y ] = XY − Y(s) X(s) ∀X, Y ∈ T
takes the form

[Xi[j ], Xk[l] ] = Xi[j ] Xk[l] − σ̂ [l]k[j ]i
[b]a[c]d X

d[c] Xa[b]

= 1

λ

(
C [j ]i Xk[l] − σ̂ [l]k[j ]i

[b]a[c]d C
[b]a Xd[c]

)
(3.10)

for the basis{Xi[j ]} ⊂ T ⊂ Uq(g). In the cases ofBn, Cn andDn analogous results hold.
�

This suggests how to define aq-deformation of the exterior algebra over a Lie algebra.

Definition 3.1. The algebra

3(T ) :=
∞⊕
m=0

T ⊗m
/
(Ker(idT ⊗2 − σ)) (3.11)

will be called a quantized orq-exterior algebra of the quantum enveloping algebraUq(g).

Since3(T ) is obtained by factorizing out a homogenous ideal, i.e.

I = (Ker(idT ⊗2 − σ)) =
∞⊕
m=0

(I ∩ T ⊗m)

we find at once

3(T ) =
∞⊕
m=0

3m(T ) (3.12)

where3m(T ) is the space of monomials inT of degreem and30(T ) = C. In section 4
we will see that after introducing a derivative d in the algebra of differential operators
3(T )×ad∧ Uq(g), where ad∧ is defined in proposition 3.4, the definition for theq-exterior
product follows immediately. This can be seen explicitly in the proof of theorem 4.2.

Before investigating extensions of the adjoint representation ofUq(g) to the algebra
3(T ) we analyse the mappingσ . Similar as in [CSWW] one realizes

Proposition 3.3. The linear mappingσ : T ⊗ T → T ⊗ T is bijective and obeys the braid
group equation

(σ ⊗ idT )(idT ⊗ σ)(σ ⊗ idT ) = (idT ⊗ σ)(σ ⊗ idT )(idT ⊗ σ) . (3.13)

It admits a complete projector decomposition according to its minimal polynomial

(σ − idT ⊗2)(σ + q2 idT ⊗2)(σ + q−2 idT ⊗2) = 0 (3.14)

for An and

(σ − idT ⊗2)(σ + q2 idT ⊗2)(σ + q−2 idT ⊗2)(σ + ε qε−N+1 idT ⊗2)

× (σ + ε qN−ε−1 idT ⊗2)(σ − ε qε−N−1 idT ⊗2)(σ − ε qN−ε+1 idT ⊗2) = 0

(3.15)

for Bn, Cn andDn.
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Proof. The matricesσ̂ in (3.8) and (3.9) are invertible. Since the matricesR̂q obey the
braid group equation we can conclude from the structure ofσ̂ that it also satisfies the braid
group equation. Using the projector decomposition of the matricesR̂q and R̂q given by
(A.13) for An or the decomposition of̂Rq given by (A.14) forBn, Cn andDn one easily
proves equations (3.14) and (3.15). �

Proposition 3.4. For a Lie algebrag of typeAn, Bn, Cn or Dn let 3(T ) be theq-exterior
algebra ofUq(g) according to definition 3.1. Then there exists a unique mapping

ad∧ : Uq(g)→ End(3(T ))

such that
(i) ad∧(u)|T = ad(u)|T ∀u ∈ Uq(g),
(ii) ad∧ is a representation ofUq(g) by derivations.

Proof. In a frist step we define the mapping

ad⊗ : Uq(g)→ End(T )

T :=
∞⊕
m=0

T ⊗m
(3.16)

through

ad⊗ =
∞⊕
m=0

ad⊗m := ε ⊕
∞⊕
m=1

(ad⊗ · · · ⊗ ad︸ ︷︷ ︸
m times

)1(m−1)

where

1(m) =


(1⊗ idUq(g) ⊗ · · · ⊗ idUq(g)︸ ︷︷ ︸

(m−1) times

) · · · · ·1 for m > 0

idUq(g) for m = 0 .

One immediately verifies that ad⊗ is a representation ofUq(g) by derivations inT . In the
next step we shall make use of

Lemma 3.5. For any idealI ⊂ T such that

ad⊗(u)(I ) ⊂ I ∀u ∈ Uq(g)
the canonically induced mapping

ad⊗ : Uq(g)→ End(T /I)

is a representation ofUq(g) by derivations inT /I .

Proof. For all u ∈ Uq(g), t̄ ∈ T /I we havead⊗(u)(t̄ ) = ad⊗(u)(t) for any t ∈ t̄ ⊂ T .
Hence

ad⊗(u)(t̄ t̄ ′) = ad⊗(u(1))(t̄ )ad⊗(u(2))(t̄ ′) .

The representation properties are evident. �
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To prove the statement of the proposition it is sufficient to show that

ad⊗(X)(Ker(idT ⊗2 − σ)) ⊂ Ker(idT ⊗2 − σ) ∀X ∈ T
since ad⊗ is representation andT generatesUq(g). From proposition 3.3 we conclude

Ker(idT ⊗2 − σ) = Im(P1(σ ))

where the projectorP1(σ ) is given by

P1(σ ) = N (σ + q2 idT ⊗2)(σ + q−2 idT ⊗2) (3.17)

for An and

P1(σ ) = N ′(σ + q2 idT ⊗2)(σ + q−2 idT ⊗2)(σ + ε qε−N+1 idT ⊗2)

× (σ + ε qN−ε−1 idT ⊗2)(σ − ε qε−N−1 idT ⊗2)(σ − ε qN−ε+1 idT ⊗2) (3.18)

for Bn, Cn andDn. N andN ′ are normalization constants.
In the case ofAn let

X = A[i]j [k]l X
l[k] Xj [i] ∈ Ker(idT ⊗2 − σ)

⇐⇒X ∈ Im(P1(σ ))

⇐⇒A[i]j [k]l = (B · P1(σ̂ ))[i]j [k]l

with some row vectorB. Now apply(idT ⊗2 − σ) to ad⊗(Xa[b])(X):

(idT ⊗2 − σ) ad⊗(Xi[j ])(X)

= 1

λ
A[c]d[e]f

(
C [b]a δ[c]d[e]f

[m]l[u]v − σ̂ [e]f [b]a
[g]h[u]v σ̂

[c]d[g]h
[r]s[m]l C

[r]s
)

× (idT ⊗2 − σ)(Xv[u] ⊗Xl[m])

where we used the relation (3.10). We evaluate the action of the linear map(idT ⊗2 − σ) on
(Xv[u] ⊗Xl[m]) and use the fact thatA · (1− σ̂ ) = 0. Then we obtain:

(idT ⊗2 − σ) ad⊗(Xi[j ])(X) = −1

λ
(A[g]h[i]j σ̂

[i]j [b]a
[k]l[e]f σ̂

[g]h[k]l
[m]n[c]d C

[m]n)

× (1− σ̂ )[c]d[e]f
[r]s[t ]u X

u[t ] ⊗Xs[r]

graphics=
A [b] a

[c] d  [e] f

-
-

-
-

(1− σ̂ )[c]d[e]f
[r]s[t ]u X

u[t ] ⊗Xs[r]

(graphical presentation of the matrix of the adjoint representation of the vector fieldsXij
acting on an elementX of the kernel of(id− σ) in the caseAn). Sinceσ̂ obeys the braid
group relation (3.13),P1(σ̂ ) is a polynomial inσ̂ andA = (B · P1(σ̂ )) for some row vector
B we obtain

ad⊗(Xi[j ])(X) ∈ Ker(idT ⊗2 − σ) .
Analogous results hold forBn, Cn andDn. Together with lemma 3.5 this concludes the
proof. �
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4. Cohomology of quantum enveloping algebras

We are now in a position to build a complex which yields the deformed homology and
cohomology structures onUq(g). Let g be a Lie algebra of typeAn, Bn, Cn or Dn. Then
we can construct the algebra of differential operators of the adjoint representation ad∧ of
Uq(g) in 3(T ):

K(q, g) := 3(T )×ad∧ Uq(g) . (4.1)

There arise slight complications in the notation sinceK(q, g) contains two different copies
of T , one inUq(g) and the other in3(T ). Therefore we denote the vector space of vector
fields contained inUq(g) by T̃ and the elements of̃T by X̃, Ỹ , . . . .

Proposition 4.1. (i) The algebraK(q, g) is a graded algebra.

K(q, g) =
∞⊕
m=0

Km(q, g) (4.2)

whereKm(q, g) = 3m(T ) ∗ Uq(g).
(ii) In K(q, g) there exists a unique grade indicating algebra isomorphismγ such that

γ (km) = (−1)mkm∀km ∈ Km(q, g).

Proof. Ad 1. LetX ∈ T ⊂ 3(T ), v ∈ Uq(g). Then lemma 2.4.3 and proposition 3.1 yield

v ∗X = ad∧(v(1))(X) ∗ v(2) = X′(1) ∗ v(2)

whereX′(1) ∈ T . Hence using lemma 3.53m(T )∗Uq(g) = Uq(g)∗3m(T ) ∀m ∈ N0. Since
3(T ) =⊕∞

m=03m(T ) and3m(T ) ∗3p(T ) ⊂ 3m+p(T ) the statement follows easily with
the help of lemma 2.4.2.

Ad 2. The consistency of the definition ofγ is obviously sinceγ|Uq(g) = idUq(g) and the
algebra relations are grade preserving according to the graded space3(T ). Then bijectivity
and uniqueness can be deduced immediately. �

Now everything needed is provided to state

Theorem 4.2. Let g be a Lie algebra of typeAn, Bn, Cn or Dn and letK(q, g) be the
corresponding algebra of adjoint differential operators according to (4.1). Then there exists
a unique exterior derivative

d :K(q, g)→ K(q, g)

such that
(i) d is Uq(g)-module morphism.
(ii)

d(X) = X̃ ∀X ∈ T ⊂ 3(T )
d(k ∗ l) = d(k) ∗ l + γ (k) ∗ d(b) ∀k, b ∈ K(q, g) .

(4.3)
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Proof. The consistency of properties (i) and (ii) must be checked only on relations which
completely determine the algebraK(q, g) sinceγ and d (by definition) preserve associativity
and the relations. Because of lemma 2.4 there are three kinds of essential algebraic relations:

(i) PureUq(g)-relations which are satisfied automatically as d|Uq(g) = 0.
(ii) Pure3(T )-relations.
(iii) Mixed relations given by (2.16).
For the calculations we restrict toAn. The results forBn, Cn andDn are similar. The

consistency of the definition of d with the mixed relations (2.16) is easily verified if we use
the basis{X̃a[b]} ⊂ T̃ ⊂ Uq(g) and {Xc[d]} ⊂ T ⊂ 3(T ) and exploit equations (3.5) and
(3.10):

d
(
X̃k[l] Xi[j ] − ad∧(X̃k[l])(Xi[j ])− ad∧(2k

[r]
[l]
s)(X

i[j ])Xs[r]
)

= X̃k[l] X̃i[j ] − [X̃k[l], X̃i[j ] ] − σ̂ [j ]i[l]k
[r]s[u]v X̃

v[u] X̃s[r]

= 0 .

Finally, lety = A[j ]i[k]l X
l[k]⊗Xi[j ] be an arbitrary element in Ker(idT ⊗2−σ) or equivalently

stated letA be an arbitrary vector in Ker(1− σ̂ T ). Then we havey = 0 ∈ 3(T ). Making
use of the relations (2.16) the application of d yields

d(y) =A[j ]i[k]l
(
X̃l[k] ∗Xi[j ] −Xl[k] ∗ X̃i[j ]

)
=A[j ]i[k]l

(
1

λ

(
C [l]k δiv δ

[j ]
[u] − σ̂ [j ]i[l]k

[a]b[u]v C
[a]b

)
Xv[u]

− (1− σ̂ )[j ]i[l]k
[a]b[u]v X

v[u] X̄b[a]

)
.

For the matrixσ̂ the folowing identity holds:

σ̂ [j ]i[l]k
[a]b[u]v C

[a]b = (σ̂ 2)[j ]i[l]k
[u]v[a]b C

[a]b (4.4)

which can be verified immediately if we use graphical notation and apply some(ε, R̂q)-
relations. Hence

d(ȳ) = A[j ]i[k]l(1− σ̂ )[j ]i[l]k
[a]b[u]v

(
1

λ
(1+ σ̂ )[a]b[u]v

[c]d[e]f C
[e]f Xd[c] −Xv[u] X̄b[a]

)
= 0

sinceA ∈ Ker(1− σ̂ T ). Conversely if d(ȳ ′) = 0 wherey ′ = A′[j ]i[k]l X
l[k]⊗Xi[j ] , it follows

thatA′ ∈ Ker(1− σ̂ T ). �

A straightforward consequence of theorem 4.2 is

Corollary 4.3. The derivative d is nilpotent and anticommutes withγ . It mapsKm(q, g)
into Km−1(q, g).

d2 = 0

dγ + γd= 0

d(Km(q, g)) ⊂ Km−1(q, g) .

(4.5)

Hence(K(q, g),d) is a complex. �
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As the derivative d is aUq(g)-module morphism we can construct cohomologies of the
quantum enveloping algebraUq(g) which are deformations of the classical cohomologies of
Lie algebras. For that purpose we consider an arbitraryUq(g)-moduleM. SinceKm(q, g)
∀m ∈ N0 is aUq(g)-module we can define the vector space ofUq(g)-module morphisms

L(q, g) =
∞⊕
m=0

Lm(q, g) :=
∞⊕
m=0

HomUq(g)(Km(q, g),M) . (4.6)

Now let dm := d|Km(q,g) ∀m ∈ N0. With the help of the usual arguments one concludes
that the mappingδm := · ◦ dm+1 ∀m ∈ N0 is a Uq(g)-module morphism which maps
Lm(q, g) to Lm+1(q, g). Denote the coboundary operator byδ := ⊕∞

m=0 δm. This yields
δ2 = 0 and thus(L(q, g), δ) is the desired (cochain) complex which defines cohomology
groups ofUq(g) relative to theUq(g)-moduleM. The obtained cohomology structure is
a deformation of the Koszul cohomology for Lie algebras. However, there is a difference
between the classical and the quantum result since the quantized sequence

C ε←− K0(q, g) = Uq(g) d1←− K1(q, g)
d2←− K2(q, g)

d3←− · · · (4.7)

is no more exact. The reason is that in the quantum case we have established(n + 1)2

linearly independent vector fields forAn instead of(n+ 1)2− 1. Similar things happen for
Bn, Cn andDn. The required dimensional restriction in the quantum enveloping algebra
Uq(g) takes place in higher-order relations, namely in the invertibility relations mentioned in
the appendix. To verify the non-exactness of the sequence (4.7) we consider for simplicity
the caseA1 where the additional contracted relation inUq(g) is given by

Djkda X̃
ad X̃kj + 2q−1 εjk X̃

kj = 0 (4.8)

hereD is a matrix formed ofR̂q andε. Thus the element

z(X, X̃) := Djkda Xad ∗ X̃kj + 2q−1 εjk X
kj (4.9)

is closed, d(z) = 0. Now supposez is exact, i.e.∃y(X, X̃) ∈ K2(q, g) of the form

y(X, X̃) = Xkj Xba f (X̃)abjk (4.10)

such that dy = z. Using the linear independence of the set{(Xij )i,j } and lemma 2.4.3 one
obtains

1

λ
(1− σ̂ 2)jilkabuv ε

uv ε(f (X̃)jilk) = 2q−1 εab . (4.11)

If we contract in equation (4.11) the free indices withεab and employ the identity
(σ̂ 2)jilkabuv ε

ab εuv = εji εlk we arrive at 0= 2(q + q−1). This is a contradiction and it is
thus proven that the sequence (4.7) is not exact. In a very similar way the non-exactness
is shown for allAn and forBn, Cn andDn. In the case ofAn it is possible to show that
the factorizationz(X, X̃) = 0 is not compatible with the exterior product. Thus one cannot
use relation (4.9) for a dimensional reduction of the exterior algebra. Therefore the element
(4.9) destroys the exactness of the sequence.
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In the remaining part of our work we restrict ourselves to the seriesAn. We sketch
someAn-specific facts without going into detail.

(i) For An there exists essentially one invertibility relation which controls the required
dimensional restriction inUq(g). One can thus prove that only one integrated one-form
(relative to the grading inK(q, g)) is responsible for the destruction of the exactness in the
spaceK1(q, g).

(ii) We construct an algebraK ′(q, g) generated by vector fields(X̃′i[j ])i,[j ] and by
one-forms(X′i[j ])i,[j ] with relations

(1− σ̂ )[l]k[j ]i
[b]a[c]d X̃

′d[c] X̃′a[b] = 1

λ
(1− σ̂ 2)[l]k[j ]i

[b]a[c]d C
[c]d X̃′a[b]

X̃′i[j ] X′k[l] − σ̂ [l]k[j ]i
[b]a[c]d X

′d[c] X̃′a[b] (4.12)

= 1

λ
(1− σ̂ 2)[l]k[j ]i

[b]a[c]d C
[c]d X′a[b]

and

A[i]j [k]l X
′l[k] X′j [i] = 0

⇐⇒A ∈ Ker(1− σ̂ T ) (4.13)

where we use the notation and thêσ -matrix of An according to (3.8). Denote by
T̃ ′ := [(X̃′i[j ])i,[j ] ]C ⊂ K ′(q, g) the vector space of vector fields and by3′m ⊂ K ′(q, g) the
vector space of monomials in(X′i[j ])i,[j ] of degreem ∈ N0. Then a proposition analogous
to proposition 4.1 holds if we replaceK(q, g) by K ′(q, g), Km(q, g) by K ′m(q, g), 3m(T )

by 3′m, Uq(g) by K ′0(q, g) andγ by γ ′. Likewise in theorem 4.2 a derivative d′ can be
established onK ′(q, g) such that d′ is aK ′0(q, g)-module morphism and has corresponding
properties as d in (4.3).

Now for the complex(K ′(q, g),d′) the exactness can be conjectured (at least forq 6=
root of unity). We proceed in a similar way as in [Jac].

We define the space

T̃ ′(j) :=
j∑
i=0

T̃ ′i (4.14)

whereT̃ ′0 = C and the space

K ′(j)(q, g) :=
∑
h+k6j

3′k T̃ ′(h) . (4.15)

It can be shown that

K ′(j)(q, g) :=
j⊕

m=0

3′m T̃ ′(j−m) . (4.16)

Since(K ′(j)(q, g))j∈N0 is a filtration ofK ′(q, g) we are able to define the associated graded
algebraKc ′(q, g) [Jac].

Kc
′(q, g) :=

∞⊕
m=0

Kc
′
m(q, g)

Kc
′
m(q, g) := K ′(m)(q, g) � K ′(m−1)(q, g)

K ′(−1)(q, g) := {0} .

(4.17)



The standard complex of quantum enveloping algebras 2765

This algebra can be regarded as theq-commutative analogue of the Koszul complex of a
certain commutative Lie algebra. SinceK ′(m)(q, g) is a subcomplex ofK ′(q, g) it follows
that (Kc ′m(q, g), d̄m := d|K ′(m)(q,g) ) is a complex, the so-calledmth difference complex. If
it is possible to prove that(Kc ′m(q, g), d̄m) ∀m ∈ N is exact one deduces like in [Jac] the
exactness of(K ′(q, g), d′). The algebraKc ′(q, g) can be identified as the algebra generated
by the generators(T i[j ])i,[j ] and(T̃ i[j ])i,[j ] which obey the relations

(1− σ̂ )[l]k[j ]i
[b]a[c]d T̃

d[c] T̃ a[b] = 0

(1− σ̂ )[l]k[j ]i
[b]a[c]d T̃

i[j ] T k[l] − σ̂ [l]k[j ]i
[b]a[c]d T

d[c] T̃ a[b] = 0
(4.18)

and

A[i]j [k]l T
l[k] T j [i] = 0

⇐⇒A ∈ Ker(1− σ̂ T ) . (4.19)

Then the subspacesKc ′m(q, g) are the spaces of monomials in(T i[j ], T̃ k[l])i,[j ],k,[l] of total
degreem. To prove the exactness of(Kc ′m(q, g), d̄m) ∀m ∈ N it suffices to find a linear
mapDm in Kc ′m(q, g) such that

Dm d̄m + d̄m Dm = idKc ′m(q,g) . (4.20)

We abbreviate formally the tensor elementtr,s := T i1[j1] · · · · · T ir [jr ] T̃ k1[l1] · · · · · T̃ ks [ls ] .
The matrixσ̃ is defined through

σ̃ [i]j [k]l
[m]n[o]p := σ̂ [k]l[i]j

[o]p[m]n (4.21)

andσ̃l := (1as⊗(1.) · · ·⊗(l−1). σ̃⊗(l+1). · · ·⊗(m).1as) where1as = (Pn) (see definition (A.11)).
Then we get forr > 2

d̄r+s(tr,s) =
[ r−1∑
k=0

(σ̃k+1 · · · · · σ̃r−1)

]
tr−1,s+1 . (4.22)

For r ∈ {0, 1} the results are obvious. Now we make the ansatz

Dr+s(tr,s) := λr+sr,s tr+1,s−1 (4.23)

with λr+sr,s a matrix which has to be determined. Equation (4.20) yields

λrr,0 = 0 (4.24)

(λs0,s − 1) t0,s = 0 (4.25)(
λs+1

1,s (σ̃1− 1)+ λs+1
0,s+1− 1

)
t1,s = 0 (4.26)

and( r−1∑
k=0

(−1)k (σ̃k+1 · · · · · σ̃r−1) λ
r+s
r−1,s+1+ λr+sr,s

r∑
k=0

(−1)k (σ̃k+1 · · · · · σ̃r )− 1
)
tr,s = 0

(4.27)
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for r > 2. The representation theories ofU(g) and of Uq(g) for {q 6= root of unity}
are equivalent [Res], the matrix̂σ admits a complete projector decomposition according
to proposition 3.3 and the projectorP1(σ̂ ) in (3.17) has the formP1(σ̂ ) = (P̃ (+),P (+)) +
(P̃ (−),P (−)) (for notation see [CSWW, FRT]). Forr = 0 we have the additional condition

(1− σ̃l) λs0,s t1,s−1 = 0∀l ∈ {1, . . . , s − 1} (4.28)

which arises from the application ofDm to the identity(1− σ̃l) t0,s = 0. For s = 2 we
obtainλ2

0,2 = P1(σ̃ ). Then fors > 2 we can construct a totallyq-symmetric tensor similar
as in [HW]. One has to use the matrix

σ ′ := q2 (P̃ (+),P (+))+ q−2 (P̃ (−),P (−))− (P̃ (+),P (−))− (P̃ (−),P (+)) (4.29)

as a braid matrix. Hence we conjecture thatλs0,s := {totally q-symmetric projector in thes
index pairs(ia[ja])a=1,...,s} exists in thesth tensor representation corresponding to the matrix
σ̂ (or σ̃ ), that for these representations a complete projector decomposition is possible and
then there should exist a covariant solution of theλr+sr,s such that the matrix coefficients in
(4.26) and (4.27) vanish independently oftr,s . All this yields the exactness of the complex
(K ′(q, g), d′).
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Appendix

The quantum enveloping algebraUq(g), q ∈ C � {1} for Lie algebras g of typeAn, Bn, Cn
andDn is Hopf algebra isomorphic to a certain minimal completion of the Hopf algebra of
regular functionals of the corresponding quantum group [FRT].Uq(g) is then generated by
the regular functionals(L±ij )i,j=1,...,N (N = n+ 1 for An, N = 2n+ 1 for Bn andN = 2n
for Cn, Dn) which in particular obey the Hopf relations

1(L±ij ) := L±i k ⊗ L±kj
ε(L±ij ) := δij (A.1)

S(L±ij ) =


q−(

n+1
2 )

[n]q !
εkn...k1 i L±l1k1 . . . L

±ln
kn εj ln...l1 for An

Cki L±l k Cjl for Bn, Cn, Dn

and the commutator relations

R̂jiq lk L
±k
v L
±l
w = L±i a L±j b R̂baq wv

R̂jiq lk L
+k
v L
−l
w = L−i a L+j b R̂baq wv

(A.2)

where1, ε and S are the comultiplication, counit and antipode ofUq(g), respectively,
εi1...in+1 = (−1)n · εi1...in+1 = (−q)l(σ ) if l(σ ) is the minimal number of transpositions of
the permutationσ = (1 ... n+1

i1 ... in+1

)
, εi1...in+1 = εi1 ... in+1 = 0 else, [n]q ! is the usualq-factorial
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[CSWW] andCij is the usualq-metric [FRT]. TheR̂q-matrices for the respective quantum
groups are taken from [FRT]. We use a summation rule throughout the paper if not otherwise
mentioned.

The R̂q-matrices, the metricC and theε-tensor obey various useful relations [CSWW,
FRT, Res]. For instance we have a projector equation forAn

εj1...jl kl+1...kn+1 ε
kl+1...kn+1 i1...il = εi1...il kl+1...kn+1 εkl+1...kn+1 j1...jl

= (−1)n(l−1) q(
n+1

2 )[n+ 1− l]q ![ l]q ! (Pl)
i1...il

j1...jl . (A.3)

(Pl) is the projector to thelth-orderq-antisymmetric tensor representation.
The vector fields defined in [CDSWZ]

Xij = 1

λ
(δii 1Uq(g) −2ik

jk) (A.4)

have a comultiplication

1(Xij ) = Xij ⊗ 1Uq(g) +2ik
jl ⊗Xlk (A.5)

where2ik
jl = L+i lS(L−kj ) andλ = (q − q−1). Additionally the vector fields satisfy some

kind of invertibility and commutation relations [DJSWZ] which can be deduced from the
identities (A.1) and (A.2). The set{Xij }i,j is linearly independent† in Uq(g). The vector
space of vector fields will be denoted by

T := [Xij | Xij ∈ Uq(g)]C . (A.6)

In [Bur, DJSWZ] it is shown thatT generatesUq(g) up to a certain completion. Similar
to [CSWW] we preform linear transformations with the matrices

C [j ]i := εj1...jni Ci[j ] := q−(
n+1

2 )

[n]q !
εi j1...jn (A.7)

according to

Fi 7→ F [j ] := C [j ]i Fi F i 7→ F[j ] := F i Ci[j ] (A.8)

for An and analogously forBn, Cn andDn with the metricCij andCij .
To simplify expressions we use graphical notation [CSWW, Res]. The fundamental

quantities are denoted by

R̂ijq kl =

i j

k l

R̂−1ij
q kl =

i j

lk

- (A.9)

† This is true if some root-of-unity values forq are excluded, which will be assumed henceforth.
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(graphical presentation of theR-matrix R̂ and of the inverse of theR-matrix R̂)

εi1...in+1 =

i1 i2
i(n+1)

. . .

Cij =
ji

εi1...in+1 = . . .
i1 i2 i(n+1)

Cij =
i j

(A.10)

(graphical presentations of the covariantq-ε-tensor in the caseAn, of the contravariant
q-ε-tensor in the caseAn, of the covariantq-metric in the caseBn, Cn andDn, and of the
contravariantq-metric in the caseBn, Cn andDn).

For An the projector(Pn) will be represented graphically.

(Pn)
[i]
[j ] =

[i]

[ j]

(A.11)

(graphical presentation of the projectorPn on theq-antisymmetricn-tensors in the caseAn).
The notation

R̂[i][j ]
q [k][ l] =

[i]  [ j]

[k] [l]

R̂[i]j
q k[l] =

[i] j

k [l]

R̂i[j ]
q [k]l =

i [ j]

[k] l

(A.12)

(graphical presentations of theR-matrix corresponding to the braiding of two copies of
the space ofq-antisymmetricn-tensors in the caseAn, of theR-matrix corresponding to
the braiding of the space ofq-antisymmetricn-tensors with the canonical vector space
representation in the caseAn, and of theR-matrix corresponding to the braiding of the
canonical vector space representation with the space ofq-antisymmetricn-tensors in the
caseAn) is then evident. The inverse matrices have analogue structure. Since the matrix
R̂
ij
q kl satisfies the Hecke equation

(R̂ − q 1)(R̂ + q−11) = 0 (A.13)

the matrixR̂[i][j ]
q [k][ l] = q−(n−1) R̂

[i][j ]
q [k][ l] obeys the same relation. In the cases ofBn, Cn

andDn the matrixR̂q enters in representations of theBWM algebra [FRT].

(R̂q − q 1)(R̂q + q−11)(R̂q − ε qε−N 1) = 0 (A.14)

whereε = 1 for Bn, Dn andε = −1 for Cn.
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